KennyHeadway's miscellaneous notes

雑記のコンテンツを集めて情報発信できるかな

『呼吸器系ウイルスの空気感染』Science誌より 2/5

www.DeepL.com/Translator(無料版)で翻訳しました。

f:id:KennyHeadway:20210903124049p:plain

出典:Airborne transmission of respiratory viruses『呼吸器系ウイルスの空気感染』
(Review Summaryの図)呼吸器系ウイルスの空気感染に関わる段階。
ウイルスを含んだエアロゾル(100μm未満)は、まず感染者の呼吸活動によって発生し、それが吐き出されて環境中に運ばれます。これらのエアロゾルは、感染力が維持されていれば、潜在的な宿主が吸い込んで新たな感染症を引き起こす可能性があります。飛沫(100μm以上)とは対照的に、エアロゾルは空気中に何時間も留まり、吐き出した感染者から1~2m以上離れた場所まで移動し、近距離でも遠距離でも新たな感染を引き起こす。

 

なお文章中の括弧の数字は引用論文等を示している。

https://www.science.org/doi/10.1126/science.abd9149

www.science.org

ウイルスを含んだエアロゾルの生成

呼気活動は、異なるメカニズムで気道内の異なる部位からエアロゾルを生成する。呼吸、発声、咳などの動作によって発生するエアロゾルは、エアロゾルのサイズ分布や気流の速さが異なり(76, 77)、その結果、各エアロゾル粒子が運ぶウイルスの種類や負荷、空気中での滞留時間、移動距離、そして最終的にエアロゾルを吸い込んだ人の気道内の沈着部位が決定される(78)。感染者が放出するエアロゾルには、ウイルス(39, 79-81)のほか、電解質、タンパク質、界面活性剤、呼吸器表面を覆う液体中のその他の成分(82, 83)が含まれている可能性がある(Fig.2)。

 

f:id:KennyHeadway:20210903172245p:plain

出典:Airborne transmission of respiratory viruses『呼吸器系ウイルスの空気感染』

エアロゾルの生成部位

呼吸器系エアロゾルは、生成される部位によって、肺胞エアロゾル、気管支エアロゾル、気管支エアロゾル喉頭エアロゾル、口腔エアロゾルに分類される(3, 84, 85)。気管支のエアロゾルは、通常の呼吸時に形成される(3)。呼気の際に、気管支の内腔表面を覆っている液体の膜が破れ、小さなエアロゾルが発生する。このようなエアロゾルは、空気-液体または空気-粘液の界面を不安定にするせん断力によって生成される。呼吸器系の気流は、特に上気道の大きな内腔では高流速下で乱流となることが多く、気管支や細気管支では層流に移行する(76, 86-88)。喉頭エアロゾルは、発声時の声帯の振動によって発生します(3)。声帯が重なることで液体の橋が形成され、それが呼気の際に破裂してエアロゾルとなる。一方、100μm以上の液滴は、主に口腔内の唾液から生成される(3)。エアロゾルの放出率は、歌や叫びなどの活動時の気流速度や発声量に応じて増加する(9, 89, 90)。

数とサイズの分布

呼気エアロゾルのサイズは、その運命を左右する最も影響力のある特性の1つである。なぜなら、サイズはエアロゾルの空気力学的特性だけでなく、その沈着力学や感染部位も決定するからである。呼吸器エアロゾルのサイズ分布は,1890年代から光学顕微鏡,高速度写真,さらに最近ではレーザーを用いた検出技術など,さまざまなアプローチで研究されてきた(1, 2, 91)。初期の研究では、5μm未満のエアロゾルを検出できない測定技術や分析方法が用いられていたが(1, 92)、空気力学的粒子径測定装置や走査型移動度粒子径測定装置などの現在の装置では、より小さなエアロゾルの検出が可能になっている。呼吸器系エアロゾルは、0.1μm、0.2~0.8μm、1.5~1.8μm、3.5~5.0μm付近にピークを持つマルチモーダルな粒度分布を示し、それぞれが異なる生成部位、生成プロセス、呼気活動を表している(2、8、9、85、91、93)。モードサイズが小さいほど、エアロゾルの発生源が呼吸器の奥にあることを示しています。話し声では145μm、咳では123μmを中心とした大きめのモードが、主に口腔や唇から発生している(3)。呼気エアロゾルの数は、呼吸、会話、咳などのほとんどの呼吸器活動において、5μm以下のものが多く、1μm以下のものも多く含まれています(8, 9)。全体として、会話では、100μm以上の液滴に対して100μm未満のエアロゾルが100倍から1000倍生成される(3)。

通常の呼吸では、呼気1リットルあたり最大7200個のエアロゾル粒子が放出されることが示されています(9, 93)。呼吸中に個人が排出するウイルス入りエアロゾルの数は、個人差が大きく、病期、年齢、肥満度、既往症などに左右されます(94, 95)。一般的に、小児の肺は発達途上であり、エアロゾルを形成する気管支や肺胞の数が少ないため、成人に比べてウイルスを含んだエアロゾルの排出量は少ない(96)。エアロゾルの形成に関わるプロセス、特にエアロゾルを形成するために分解する傾向に影響を与える気道を覆う液体の特性は、吐き出されるエアロゾルの数に重要な役割を果たす(94)。ある研究では、1分間の会話で少なくとも1,000個のエアロゾルが発生すると報告されている(97)。咳は短時間でより多くのエアロゾルを発生させることができるが、連続した呼吸や会話に比べて散発的であり、特に感染者には臨床症状が見られない。したがって、感染者の呼吸や会話などの継続的な発声は、頻度の低い咳よりも、ウイルスを含んだエアロゾルの総量が多くなると考えられる。

 

エアロゾルのウイルス含有量

エアロゾルのウイルス量は、空気感染の相対的な貢献度を決定する重要な要素である。しかし,空気中のウイルスは濃度が低く,サンプリング中に破壊されたり不活性化されたりしやすいため,空気中のウイルスをサンプリングして検出することは困難である。大気中のウイルスは,高感度の定量的ポリメラーゼ連鎖反応(qPCR)や定量的逆転写PCR(qRT-PCR)法により,ウイルスゲノムの存在を分析することが多い。しかし、遺伝物質が存在するだけでは、ウイルスが感染力を持つかどうかは分からない。ウイルスの生存率は、ゲノム物質、核タンパク質、カプシド(※脚注追記 ウイルスゲノムを取り囲むタンパク質の殻)、エンベロープ(※脚注追記 脂溶性の外膜)などの完全性と機能に依存する。空気からウイルスを培養しようとして失敗した研究もあるが、液体凝縮回収装置などのより穏やかな方法を用いることで、エアロゾル中のインフルエンザウイルスやSARS-CoV-2など、多数の生存可能な呼吸器系ウイルスを検出することができるようになった(35, 40, 98)。

 

呼気や室内の空気サンプルからは、アデノウイルス(29, 99)、コクサッキーウイルス(100)、インフルエンザウイルス(22, 23, 98, 101)、ライノウイルス(9, 26-28)、麻疹ウイルス(16, 17)、RSウイルス(RSV; Respiratory syncytial virus)(25, 102)、SARS-CoV(31)、MERS-CoV(32, 103)、SARS-CoV-2(34, 35, 40-44)など、多くのウイルスが分離されている(Table.1)。COVID-19患者2名がいた病室の空気中のSARS-CoV-2の濃度は、1リットルあたり6~74TCID50(1リットルあたりの組織培養感染量の中央値)であった(35)。エアロゾル粒子の異なるサイズ間でのビリオンの分布は、その生成部位、生成メカニズム、および生成部位での感染の重症度に関連しており、ウイルスごとに異なる(104)。一般的には、臨床検体(喀痰や唾液など)中のウイルス濃度は、呼吸液から発生する飛沫やエアロゾル中の濃度に直結すると考えられている。つまり、ウイルス量は飛沫やエアロゾルの初期体積に比例すると考えられている(50、55、71)。しかし,A型またはB型インフルエンザウイルス,パラインフルエンザウイルス,コロナウイルス,hRV,RSVに感染した人の呼気から採取したエアロゾルと,さまざまな環境で採取した空気をサイズごとに分けてみると,ウイルスはより小さなエアロゾルに濃縮されることがわかった(10)。インフルエンザ患者が呼吸、会話、咳をしながら採取したサンプルでは、ウイルスRNAの半分以上が4~5μm未満のエアロゾルに含まれていた(23, 104, 105)。いくつかの呼吸器系ウイルスを対象とした研究では、大きなエアロゾルよりも小さなエアロゾル(<5μm)にウイルスRNAが多く含まれていた(39)。診療所で測定した環境エアロゾル中のインフルエンザウイルスとRSVの分布を調べたところ、A型インフルエンザウイルスRNAの42%が4μm以下のエアロゾルに含まれていたが、RSVのRNAは9%しか含まれていなかった(102)。また、診療所、保育所、飛行機内のエアロゾルを採取した研究では、A型インフルエンザウイルスRNAの半数以上が2.5μm以下のエアロゾルに含まれていた(106)。ある研究では、COVID-19患者の一部は、呼気中に1時間あたり最大105~107のSARS-CoV-2ゲノムコピーを放出するが、他の患者は検出可能なウイルスを吐き出さないことがわかった(107)。生成されるエアロゾルの数とそのウイルス量の両方に大きな個人差があることが、COVID-19による感染の過分散に寄与している可能性があり、これは超拡散現象には欠かせない要素である(108)。

f:id:KennyHeadway:20210909125223p:plain

出典:Airborne transmission of respiratory viruses『呼吸器系ウイルスの空気感染』
表の記載内容は翻訳した内容に置き換えた。

感染力のあるウイルスは小さなエアロゾルに多く含まれるが、ある数のウイルスにさらされたときの感染確率を規定する用量反応関係は、まだ明らかになっていない。感染しやすい宿主の場合、最小感染量はウイルスの種類と気道内の沈着部位によって異なるため、肺の奥深くに沈着する小さなエアロゾルを吸入すれば、感染を開始するために必要なウイルスの量は少なくて済む可能性がある。インフルエンザウイルスの研究では、ヒトの感染開始に必要な量をプラーク形成単位(PFU; plaque-forming units)で表すと、エアロゾルを吸入した場合は、鼻腔内に接種した場合の100分の1程度であることが示されている(101)。エアロゾル中のウイルス量や感染性ビリオンの分布を粒子径の関数として、様々な人や病気の段階で評価することができれば、呼吸器ウイルスの空気感染についての理解が深まると考えられる。